Lecture 8. Functions are fixed-sign, constant-sign and alternating-sign

We need the following information: fixed-sign, constant-sign and alternatingsign functions.

Let us consider a real n-dimension space R^{n}; a vector, belonging to it, will be $x \in R^{n}$.

Let the nonlinear system be described by the equation of general form:

$$
\dot{x}=f(x)
$$

The initial conditions are known: $f(0)=0$.
Let us introduce a scalar function $V(x)$ of the vector argument. In space R^{n} we will investigate some area D, which obligatory includes the beginning of coordinates. Area " D " is an area of normal functioning of ACS.

Definition 1. Function $V(x)$ is one of fixed sign in area D if in this area it satisfies to the following conditions:

$$
\left\{\begin{array}{l}
V(x) \neq 0, \text { if } \quad x \neq 0, \\
V(x)=0, \text { if } \quad x=0 .
\end{array}\right.
$$

Definition 2. Function $V(x)$ is one of fixed positive sign in area D, if in this area it satisfies to the following conditions:

$$
\left\{\begin{array}{l}
V(x)>0, \text { if } x \neq 0 \\
V(x)=0, \text { if } x=0
\end{array}\right.
$$

Definition 3. Function $V(x)$ is one of fixed negative sign in area D, if in this area it satisfies to the following conditions:

$$
\left\{\begin{array}{l}
V(x)<0, \text { if } \quad x \neq 0 \\
V(x)=0, \text { if } \quad x=0
\end{array}\right.
$$

Fig.1. Area of normal functioning of the system

Example 6.6.

Let's $x \in R^{2}, V(x)=2 x_{1}^{2}+5 x_{2}^{2}$
(fig. 2a)

Example 6.7.

Let's $\quad x \in R^{2}, V(x)=-2 x_{1}^{2}-5 x_{2}^{2}$
(fig. 2b)

Fig. 2a. Function of fixed positive sign

Fig. 2b. Function of fixed negative sign

Definition 4. Function $V(x)$ is one of constant sign in area D, if in this area it satisfies to the following conditions:

$$
\left\{\begin{array}{l}
V(x) \neq 0, \text { if } \quad x \neq 0, \\
V(x)=0, \text { if } \quad x=0 .
\end{array}\right.
$$

Definition 5. Function $V(x)$ is one of positive constant sign in area D, if in this area it satisfies to the following conditions:

$$
\left\{\begin{array}{l}
V(x) \geq 0, \text { if } x \neq 0, \\
V(x)=0, \text { if } x=0 .
\end{array}\right.
$$

Definition 6. Function $V(x)$ is one of negative constant sign in area D, if in this area it satisfies to the following conditions:

$$
\left\{\begin{array}{l}
V(x) \leq 0, \text { if } \quad x \neq 0, \\
V(x)=0, \text { if } \quad x=0 .
\end{array}\right.
$$

Example 6.8.

Let's $x \in R^{1}, V(x)=2 x^{2}$
(fig. 2c)

Example 6.9.
Let's $\quad x \in R^{2}, V(x)=x_{1}^{2}+x_{2}^{2}$
(fig. 2d)

Fig. 2c. Function of fixed positive sign Fig. 2d. Function of constant positive sign

Example 6.10. Let $x \in R^{n}$. Functions are $V(x)=x^{T}, x$ - fixed positive sign; $V(x)=-x^{T}, x-$ fixed negative sign.

Example 6.11. Let $x \in R^{3}$ (fig. 2e.)

Fig. 2e. Alternating-sign function
Definition 7. Function $V(x)$ is one of alternating sign in area D, if in this area it can be of both signs $V(x), V(x)>0$ and $V(x)<0$, in case if $x \neq 0$.

